Today Public transport is growing not only in terms of high passenger capacity but also considering high efficiency and it has become one of the preferred alternatives to automobile travel. This is evident, as for example, in the case of airport terminal working and management. The same could be for Bus Transport station considering roadway. As a result, many railway stations experience high levels of pedestrian congestion especially during the morning and afternoon peak periods. Traditional design and evaluation procedures for pedestrian transit facilities aim to maintain a desirable Pedestrian Level-Of-Service (PLOS) for the individual pedestrian areas or sub precincts. More in general, transit facilities and their sub-precincts interact with one another so that pedestrian circulation might be better assessed from a broader systems perspective. Microsimulation packages that can model pedestrians (e.g. VISSIM-VISWALK) can be employed to assess these interactions. This research outlines a procedure for the potential implementation of pedestrian flow analysis in a bus/rail transit station using micro-simulation. Base model data requirements are identified which include static (facility layout and locations of temporary equipment) and dynamic data (pedestrian demand and public transport services). Possible model calibration criteria would be also identified. A VISSIM micro-simulation base model would be developed for one of the main Airport terminal in Sicily (Italy) for investigating proposed station operational and infrastructure changes. This case study provided a good example for the potential implementation of micro-simulation models in the analysis of pedestrian circulation.
Study of emergency setting for urban facility using microsimulation tool
Tiziana Campisi
Writing – Review & Editing
;Antonino Canale
Methodology
;Giovanni TesoriereVisualization
2017-01-01
Abstract
Today Public transport is growing not only in terms of high passenger capacity but also considering high efficiency and it has become one of the preferred alternatives to automobile travel. This is evident, as for example, in the case of airport terminal working and management. The same could be for Bus Transport station considering roadway. As a result, many railway stations experience high levels of pedestrian congestion especially during the morning and afternoon peak periods. Traditional design and evaluation procedures for pedestrian transit facilities aim to maintain a desirable Pedestrian Level-Of-Service (PLOS) for the individual pedestrian areas or sub precincts. More in general, transit facilities and their sub-precincts interact with one another so that pedestrian circulation might be better assessed from a broader systems perspective. Microsimulation packages that can model pedestrians (e.g. VISSIM-VISWALK) can be employed to assess these interactions. This research outlines a procedure for the potential implementation of pedestrian flow analysis in a bus/rail transit station using micro-simulation. Base model data requirements are identified which include static (facility layout and locations of temporary equipment) and dynamic data (pedestrian demand and public transport services). Possible model calibration criteria would be also identified. A VISSIM micro-simulation base model would be developed for one of the main Airport terminal in Sicily (Italy) for investigating proposed station operational and infrastructure changes. This case study provided a good example for the potential implementation of micro-simulation models in the analysis of pedestrian circulation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.