Synthesis of nanoparticles was possible employing a Nd: YAG pulsed laser at fundamental harmonic. The production of nanoparticles in water depends mainly on the laser parameters (pulse duration, energy, wavelength), the irradiation conditions (focal spot, repetition rate, irradiation time) and the medium where the ablation occurs (solid target, water, solution concentration). The nanoparticles can be introduced in solids, liquids or gases to change many physical characteristics. The optical properties of polymers and solutions, the wetting ability of liquids, the electron density of laser-generated plasma, represent some examples that can be controlled by the concentration of metallic nanoparticles (Au, Ag, Ti, Cu). Some bio-medical applications will be presented and discussed.
Laser-generated nanoparticles to change physical properties of solids, liquids and gases
Torrisi A.
;
2019-01-01
Abstract
Synthesis of nanoparticles was possible employing a Nd: YAG pulsed laser at fundamental harmonic. The production of nanoparticles in water depends mainly on the laser parameters (pulse duration, energy, wavelength), the irradiation conditions (focal spot, repetition rate, irradiation time) and the medium where the ablation occurs (solid target, water, solution concentration). The nanoparticles can be introduced in solids, liquids or gases to change many physical characteristics. The optical properties of polymers and solutions, the wetting ability of liquids, the electron density of laser-generated plasma, represent some examples that can be controlled by the concentration of metallic nanoparticles (Au, Ag, Ti, Cu). Some bio-medical applications will be presented and discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.