Podcasts are becoming an increasingly popular way to share streaming audio content. Podcast summarization aims at improving the accessibility of podcast content by automatically generating a concise summary consisting of text/audio extracts. Existing approaches either extract short audio snippets by means of speech summarization techniques or produce abstractive summaries of the speech transcription disregarding the podcast audio. To leverage the multimodal information hidden in podcast episodes we propose an end-to-end architecture for extractive summarization that encodes both acoustic and textual contents. It learns how to attend relevant multimodal features using an ad hoc, deep feature fusion network. The experimental results achieved on a real benchmark dataset show the benefits of integrating audio encodings into the extractive summarization process. The quality of the generated summaries is superior to those achieved by existing extractive methods.

Leveraging multimodal content for podcast summarization

Moreno La Quatra;
2022-01-01

Abstract

Podcasts are becoming an increasingly popular way to share streaming audio content. Podcast summarization aims at improving the accessibility of podcast content by automatically generating a concise summary consisting of text/audio extracts. Existing approaches either extract short audio snippets by means of speech summarization techniques or produce abstractive summaries of the speech transcription disregarding the podcast audio. To leverage the multimodal information hidden in podcast episodes we propose an end-to-end architecture for extractive summarization that encodes both acoustic and textual contents. It learns how to attend relevant multimodal features using an ad hoc, deep feature fusion network. The experimental results achieved on a real benchmark dataset show the benefits of integrating audio encodings into the extractive summarization process. The quality of the generated summaries is superior to those achieved by existing extractive methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/167861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact