The way people access resources, data and services, is radically changing using modern mobile technologies. In this scenario, biometry is a good solution for security issues even if its performance is influenced by the acquired data quality. In this paper, a novel embedded automatic fingerprint authentication system (AFAS) for mobile users is described. The goal of the proposed system is to improve the performance of a standard embedded AFAS in order to enable its employment in mobile devices architectures. The system is focused on the quality evaluation of the raw acquired fingerprint, identifying areas of poor quality.Using this approach, no image enhancement process is needed after the fingerprint acquisition phase. TheAgility RC2000 board has been used to prototype the embedded device. Due its different image resolution and quality, the experimental tests have been conducted on both PolyU and FVC2002 DB2-B free databases. Experimental results show an interesting trade-off between used resources, authentication time, and accuracy rate. The best achieved false acceptance rate (FAR) and false rejection rate (FRR) indexes are 0% and 6.25%, respectively.The elaboration time is 62.6ms with a working frequency of 50MHz.

Fingerprint Quality Evaluation in a Novel Embedded Authentication System for Mobile Users

CONTI, VINCENZO;
2015-01-01

Abstract

The way people access resources, data and services, is radically changing using modern mobile technologies. In this scenario, biometry is a good solution for security issues even if its performance is influenced by the acquired data quality. In this paper, a novel embedded automatic fingerprint authentication system (AFAS) for mobile users is described. The goal of the proposed system is to improve the performance of a standard embedded AFAS in order to enable its employment in mobile devices architectures. The system is focused on the quality evaluation of the raw acquired fingerprint, identifying areas of poor quality.Using this approach, no image enhancement process is needed after the fingerprint acquisition phase. TheAgility RC2000 board has been used to prototype the embedded device. Due its different image resolution and quality, the experimental tests have been conducted on both PolyU and FVC2002 DB2-B free databases. Experimental results show an interesting trade-off between used resources, authentication time, and accuracy rate. The best achieved false acceptance rate (FAR) and false rejection rate (FRR) indexes are 0% and 6.25%, respectively.The elaboration time is 62.6ms with a working frequency of 50MHz.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/104931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact