Smart grids are an evolution of the existing electric distribution systems due to the growing demand of energy, the expansion in the use of renewable energy sources, and the development of novel and innovative information and communication technologies (ICT). The installation of systems based on wireless networks can play a key role in the extension of the smart grid toward smart homes, that can be deemed as one of the most important components of smart grids. In fact, monitoring and control applications, energy harvesting, and innovative metering methodologies through smart wireless devices are becoming increasingly important. This paper proposes a novel energy management approach for smart homes that combines a wireless network, based on bluetooth low energy (BLE), for communication among home appliances, with a home energy management (HEM) scheme. The proposed approach addresses the impact of standby appliances and high-power rating loads in peak hours to the energy consumption charges of consumers. Simulation results show that the proposed approach is efficient in terms of reducing peak load demand and electricity consumption charges with an increase in the comfort level of consumers.

A Novel Energy Management Approach for Smart Homes using Bluetooth Low Energy

COLLOTTA, MARIO;PAU, GIOVANNI
2015-01-01

Abstract

Smart grids are an evolution of the existing electric distribution systems due to the growing demand of energy, the expansion in the use of renewable energy sources, and the development of novel and innovative information and communication technologies (ICT). The installation of systems based on wireless networks can play a key role in the extension of the smart grid toward smart homes, that can be deemed as one of the most important components of smart grids. In fact, monitoring and control applications, energy harvesting, and innovative metering methodologies through smart wireless devices are becoming increasingly important. This paper proposes a novel energy management approach for smart homes that combines a wireless network, based on bluetooth low energy (BLE), for communication among home appliances, with a home energy management (HEM) scheme. The proposed approach addresses the impact of standby appliances and high-power rating loads in peak hours to the energy consumption charges of consumers. Simulation results show that the proposed approach is efficient in terms of reducing peak load demand and electricity consumption charges with an increase in the comfort level of consumers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/113457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 164
  • ???jsp.display-item.citation.isi??? 121
social impact