This paper presents a computational technique for the prediction of fatigue-driven delamination growth in composite materials. The interface element, which has been extensively applied to predict delamination growth due to static loading, has been modified to incorporate the effects of cyclic loading. Using a damage mechanics formulation, the constitutive law for the interface element has been extended by incorporating a modified version of a continuum fatigue damage model. The paper presents details of the fatigue degradation strategy and examples of the predicted fatigue delamination growth in mode I, mode II and mixed mode I/II are presented to demonstrate that the numerical model mimics the Paris law behaviour usually observed in experimental testing. Copyright © 2005 John Wiley & Sons, Ltd.

Numerical simulation of fatigue-driven delamination using interface elements

TUMINO, DAVIDE;
2005

Abstract

This paper presents a computational technique for the prediction of fatigue-driven delamination growth in composite materials. The interface element, which has been extensively applied to predict delamination growth due to static loading, has been modified to incorporate the effects of cyclic loading. Using a damage mechanics formulation, the constitutive law for the interface element has been extended by incorporating a modified version of a continuum fatigue damage model. The paper presents details of the fatigue degradation strategy and examples of the predicted fatigue delamination growth in mode I, mode II and mixed mode I/II are presented to demonstrate that the numerical model mimics the Paris law behaviour usually observed in experimental testing. Copyright © 2005 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11387/13724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 141
  • ???jsp.display-item.citation.isi??? ND
social impact