In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases-O2 and CO2-by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition-it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas-the permeation of CO2 was higher than O2; (iii) the nanoclay loading-it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.

Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend Nanocomposites

Morreale, Marco;
2020-01-01

Abstract

In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases-O2 and CO2-by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition-it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas-the permeation of CO2 was higher than O2; (iii) the nanoclay loading-it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/142631
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact