Hydrothermal carbonization (HTC) is a promising thermochemical pre-treatment to convert waste biomass into solid biofuels. However, the process yields large amounts of organic process water (PW), which must be properly disposed of or reused. In this study, the PW produced from the hydrothermal carbonization of lemon peel waste (LP) was recycled into HTC process of LP with the aim of maximize energy recovery from the aqueous phase while saving water resources and mitigating the overall environmental impact of the process. The effects of HTC temperature on the properties of solid and liquid products were investigated during PW recirculation. Experiments were carried out at three different operating temperatures (180, 220, 250 °C), fixed residence times of 60 min, and solid to liquid load of 20 wt%, on a dry basis. Hydrochars were characterized in terms of proximate analysis and higher heating values while liquid phases were analyzed in terms of pH and total organic carbon content (TOC). PW recirculation led to a solid mass yield increase and the effect was more pronounced at lower HTC temperature. The increase of solid mass yield, after recirculation steps (maximum increase of about 6% at 180 °C), also led to a significant energy yield enhancement. Results showed that PW recirculation is a viable strategy for a reduction of water consumption and further carbon recovery; moreover preliminary results encourage for an in-depth analysis of the effects of the PW recirculation for different biomasses and at various operating conditions.

Hydrothermal Carbonization of Lemon Peel Waste: Preliminary Results on the Effects of Temperature during Process Water Recirculation

Picone, Antonio;Volpe, Maurizio;Giustra, Maria Gabriella;Di Bella, Gaetano;Messineo, Antonio
2021

Abstract

Hydrothermal carbonization (HTC) is a promising thermochemical pre-treatment to convert waste biomass into solid biofuels. However, the process yields large amounts of organic process water (PW), which must be properly disposed of or reused. In this study, the PW produced from the hydrothermal carbonization of lemon peel waste (LP) was recycled into HTC process of LP with the aim of maximize energy recovery from the aqueous phase while saving water resources and mitigating the overall environmental impact of the process. The effects of HTC temperature on the properties of solid and liquid products were investigated during PW recirculation. Experiments were carried out at three different operating temperatures (180, 220, 250 °C), fixed residence times of 60 min, and solid to liquid load of 20 wt%, on a dry basis. Hydrochars were characterized in terms of proximate analysis and higher heating values while liquid phases were analyzed in terms of pH and total organic carbon content (TOC). PW recirculation led to a solid mass yield increase and the effect was more pronounced at lower HTC temperature. The increase of solid mass yield, after recirculation steps (maximum increase of about 6% at 180 °C), also led to a significant energy yield enhancement. Results showed that PW recirculation is a viable strategy for a reduction of water consumption and further carbon recovery; moreover preliminary results encourage for an in-depth analysis of the effects of the PW recirculation for different biomasses and at various operating conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11387/144383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact