: Intestinal organoids are used to analyze the differentiation of enteroendocrine cells (EECs) and to manipulate their density for treating type 2 diabetes. EEC differentiation is a continuous process tightly regulated in the gut by a complex regulatory network. However, the effect of chronic hyperglycemia, in the modulation of regulatory networks controlling identity and differentiation of EECs, has not been analyzed. This study aimed to investigate the effect of glucotoxicity on EEC differentiation in small intestinal organoid platforms. Mouse intestinal organoids were cultured in the presence/absence of high glucose concentrations (35 mM) for 48 h to mimic glucotoxicity. Chronic hyperglycemia impaired the expression of markers related to the differentiation of EEC progenitors (Ngn3) and L-cells (NeuroD1), and it also reduced the expression of Gcg and GLP-1 positive cell number. In addition, the expression of intestinal stem cell markers was reduced in organoids exposed to high glucose concentrations. Our data indicate that glucotoxicity impairs L-cell differentiation, which could be associated with decreased intestinal stem cell proliferative capacity. This study provides the identification of new targets involved in new molecular signaling mechanisms impaired by glucotoxicity that could be a useful tool for the treatment of type 2 diabetes.

High Glucose Exposure Impairs L-Cell Differentiation in Intestinal Organoids: Molecular Mechanisms and Clinical Implications

Malaguarnera, Roberta;
2021-01-01

Abstract

: Intestinal organoids are used to analyze the differentiation of enteroendocrine cells (EECs) and to manipulate their density for treating type 2 diabetes. EEC differentiation is a continuous process tightly regulated in the gut by a complex regulatory network. However, the effect of chronic hyperglycemia, in the modulation of regulatory networks controlling identity and differentiation of EECs, has not been analyzed. This study aimed to investigate the effect of glucotoxicity on EEC differentiation in small intestinal organoid platforms. Mouse intestinal organoids were cultured in the presence/absence of high glucose concentrations (35 mM) for 48 h to mimic glucotoxicity. Chronic hyperglycemia impaired the expression of markers related to the differentiation of EEC progenitors (Ngn3) and L-cells (NeuroD1), and it also reduced the expression of Gcg and GLP-1 positive cell number. In addition, the expression of intestinal stem cell markers was reduced in organoids exposed to high glucose concentrations. Our data indicate that glucotoxicity impairs L-cell differentiation, which could be associated with decreased intestinal stem cell proliferative capacity. This study provides the identification of new targets involved in new molecular signaling mechanisms impaired by glucotoxicity that could be a useful tool for the treatment of type 2 diabetes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/148367
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact