Background: Neuropathic pain is caused by primary lesion or dysfunction of either peripheral or central nervous system. Due to its complex pathogenesis, often related to a number of comorbidities, such as cancer, neurodegenerative and neurovascular diseases, neuropathic pain still represents an unmet clinical need, lacking long-term effective treatment and complex case-by-case approach. Aim and methods: We analyzed the recent literature on the role of selective voltage-sensitive sodium, calcium and potassium permeable channels and non-selective gap junctions (GJs) and hemichannels (HCs) in establishing and maintaining chronic neuropathic conditions. We finally focussed our review on the role of extracellular microenvironment modifications induced by resident glial cells and on the recent advances in cell-to-cell and cell-to-extracellular environment communication in chronic neuropathies. Conclusion: In this review, we provide an update on the current knowledge of neuropathy chronicization processes with a focus on both neuronal and glial ion channels, as well as on channel-mediated intercellular communication.
Intercellular communication and ion channels in neuropathic pain chronicization
Torrisi, F.;
2020-01-01
Abstract
Background: Neuropathic pain is caused by primary lesion or dysfunction of either peripheral or central nervous system. Due to its complex pathogenesis, often related to a number of comorbidities, such as cancer, neurodegenerative and neurovascular diseases, neuropathic pain still represents an unmet clinical need, lacking long-term effective treatment and complex case-by-case approach. Aim and methods: We analyzed the recent literature on the role of selective voltage-sensitive sodium, calcium and potassium permeable channels and non-selective gap junctions (GJs) and hemichannels (HCs) in establishing and maintaining chronic neuropathic conditions. We finally focussed our review on the role of extracellular microenvironment modifications induced by resident glial cells and on the recent advances in cell-to-cell and cell-to-extracellular environment communication in chronic neuropathies. Conclusion: In this review, we provide an update on the current knowledge of neuropathy chronicization processes with a focus on both neuronal and glial ion channels, as well as on channel-mediated intercellular communication.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.