The present study analyzed the in vitro effects induced by sodium L-lactate on human astrocytes and the SH-SY5Y cell line, when added at concentrations of 5, 10, and 25 mmol/liter. Expression of brain-derived neurotrophic factor (BDNF), inducible nitric oxide synthase (iNOS), and heat shock protein 70 kDa (HSP70) was evaluated by Western blot analysis. Cell viability with MTT, release of nitric oxide (NO) through the Griess reaction, and production of BDNF by enzyme-linked immunoassay was determined. Data indicate that, in SH-SY5Y as well as in cortical astrocytes, after 4 hr sodium L-lactate increases the expression and release of BDNF, iNOS, and NO; after 24 hr, it turns is ineffective for the production of the neurotrophin in SH-SY5Y and not in astrocytes, but the expression of iNOS and release of NO appear to be further increased compared with those after 4 hr. Sodium L-lactate influences differently the expression of HSP70 in SH-SY5Y compared with astrocytes. We propose, based on these findings, that sodium L-lactate affects the expression of BDNF in SH-SY5Y and astrocytes in a different manner: high levels of iNOS and NO expressed in SH-SY5Y have a profound inhibitory effect on the release of BDNF related to a more limited production of HSP70 by SH-SY5Y. In conclusion, the results demonstrate differences in the responses of SH-SY5Y and astrocytes to stimulation by high levels of sodium L-lactate. Sodium L-lactate differently and dose and time dependently influences the expression and release of BDNF, iNOS, NO, and HSP70 depending on the cell type. (C) 2012 Wiley Periodicals, Inc.

Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures

Perciavalle, V.;Graziano, A. C. E.;
2013-01-01

Abstract

The present study analyzed the in vitro effects induced by sodium L-lactate on human astrocytes and the SH-SY5Y cell line, when added at concentrations of 5, 10, and 25 mmol/liter. Expression of brain-derived neurotrophic factor (BDNF), inducible nitric oxide synthase (iNOS), and heat shock protein 70 kDa (HSP70) was evaluated by Western blot analysis. Cell viability with MTT, release of nitric oxide (NO) through the Griess reaction, and production of BDNF by enzyme-linked immunoassay was determined. Data indicate that, in SH-SY5Y as well as in cortical astrocytes, after 4 hr sodium L-lactate increases the expression and release of BDNF, iNOS, and NO; after 24 hr, it turns is ineffective for the production of the neurotrophin in SH-SY5Y and not in astrocytes, but the expression of iNOS and release of NO appear to be further increased compared with those after 4 hr. Sodium L-lactate influences differently the expression of HSP70 in SH-SY5Y compared with astrocytes. We propose, based on these findings, that sodium L-lactate affects the expression of BDNF in SH-SY5Y and astrocytes in a different manner: high levels of iNOS and NO expressed in SH-SY5Y have a profound inhibitory effect on the release of BDNF related to a more limited production of HSP70 by SH-SY5Y. In conclusion, the results demonstrate differences in the responses of SH-SY5Y and astrocytes to stimulation by high levels of sodium L-lactate. Sodium L-lactate differently and dose and time dependently influences the expression and release of BDNF, iNOS, NO, and HSP70 depending on the cell type. (C) 2012 Wiley Periodicals, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/163508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact