Krabbe disease or globoid cell leukodystrophy is a degenerative, lysosomal storage disease resulting from the deficiency of beta-galactocerebrosidase activity. This enzyme catalyzes the lysosomal hydrolysis of galactocerebroside and psychosine. Krabbe disease is inherited as an autosomal recessive trait, and many of the 70 disease-causing mutations identified in the GALC gene are associated with protein misfolding. Recent studies have shown that enzyme inhibitors can sometimes translocate misfolded polypeptides to their appropriate target organelle bypassing the normal cellular quality control machinery and resulting in enhanced activity. In search for pharmacological chaperones that could rescue the beta-galactocerebrosidase activity, we investigated the effect of alpha-Lobeline or 3',4',7-trihydroxyisoflavone on several patient-derived fibroblast cell lines carrying missense mutations, rather than on transduced cell lines. Incubation of these cell lines with alpha-lobeline or 3',4',7-trihydroxyisoflavone leads to an increase of beta-galacocerebrosidase activity in p.G553R + p.G553R, in p.E130K + p.N295T and in p.G57S + p.G57S mutant forms over the critical threshold. The low but sustained expression of beta-galactocerebrosidase induced by these compounds is a promising result; in fact, it is known that residual enzyme activity of only 15-20% is sufficient for clinical efficacy. The molecular interaction of the two chaperones with beta-galactocerebrosidase is also supported by in silico analysis. Collectively, our combined in silico-in vitro approach indicate alpha-lobeline and 3',4',7-trihydroxyisoflavone as two potential pharmacological chaperones for the treatment or improvement of quality of life in selected Krabbe disease patients. (C) 2014 Elsevier Inc. All rights reserved.

Pharmacological chaperones increase residual β-galactocerebrosidase activity in fibroblasts from krabbe patients

Graziano, A.;
2014-01-01

Abstract

Krabbe disease or globoid cell leukodystrophy is a degenerative, lysosomal storage disease resulting from the deficiency of beta-galactocerebrosidase activity. This enzyme catalyzes the lysosomal hydrolysis of galactocerebroside and psychosine. Krabbe disease is inherited as an autosomal recessive trait, and many of the 70 disease-causing mutations identified in the GALC gene are associated with protein misfolding. Recent studies have shown that enzyme inhibitors can sometimes translocate misfolded polypeptides to their appropriate target organelle bypassing the normal cellular quality control machinery and resulting in enhanced activity. In search for pharmacological chaperones that could rescue the beta-galactocerebrosidase activity, we investigated the effect of alpha-Lobeline or 3',4',7-trihydroxyisoflavone on several patient-derived fibroblast cell lines carrying missense mutations, rather than on transduced cell lines. Incubation of these cell lines with alpha-lobeline or 3',4',7-trihydroxyisoflavone leads to an increase of beta-galacocerebrosidase activity in p.G553R + p.G553R, in p.E130K + p.N295T and in p.G57S + p.G57S mutant forms over the critical threshold. The low but sustained expression of beta-galactocerebrosidase induced by these compounds is a promising result; in fact, it is known that residual enzyme activity of only 15-20% is sufficient for clinical efficacy. The molecular interaction of the two chaperones with beta-galactocerebrosidase is also supported by in silico analysis. Collectively, our combined in silico-in vitro approach indicate alpha-lobeline and 3',4',7-trihydroxyisoflavone as two potential pharmacological chaperones for the treatment or improvement of quality of life in selected Krabbe disease patients. (C) 2014 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/163525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 51
social impact