The first aim of the study was to identify the most appropriate time for differentiation of adipose tissue derived mesenchymal stem cells (MSCs) to chondrocytes, through the self-assembly process. For this purpose, the expression of some chondrocyte markers, such as collagen type I, collagen type II, RUNX2 and lubricin was investigated at different times (7, 14, 21 and 28 days) of chondrogenic differentiation of MSCs, by using immunohistochemistry and Western blot analysis. The second aim of the study was to demonstrate that the expression of lubricin, such as the expression of collagen type II, could be a possible biomarker for the detection of chondrocytes well-being and viability in the natural self-assembling constructs, called 'cell pellets'. Histology (hematoxylin and eosin) and histochemistry (alcian blue staining) methods were used to assess the chondrogenic differentiation of MSCs. The results showed that after 21 days the differentiated chondrocytes, when compared with MSCs cultured without chondrogenic medium (CD44, CD90 and CD105 positive; CD45, CD14 and CD34 negative), were able to produce significant quantities of collagen type I, collagen type II, and lubricin, suggesting hyaline cartilage formation. During the differentiation phase, the cells showed a reduced expression of RUNX2, a protein expressed by osteoblasts. Our studies demonstrated that 21 days is the optimum time for the implantation of chondrocytes differentiated from adipose tissue-derived MSCs. This information could be useful for the future development of cell-based repair therapies for degenerative diseases of articular cartilage. (C) 2014 Elsevier GmbH. All rights reserved.
Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue
Szychlinska, M. A.;Graziano, A. C. E.;Avola, R.;
2014-01-01
Abstract
The first aim of the study was to identify the most appropriate time for differentiation of adipose tissue derived mesenchymal stem cells (MSCs) to chondrocytes, through the self-assembly process. For this purpose, the expression of some chondrocyte markers, such as collagen type I, collagen type II, RUNX2 and lubricin was investigated at different times (7, 14, 21 and 28 days) of chondrogenic differentiation of MSCs, by using immunohistochemistry and Western blot analysis. The second aim of the study was to demonstrate that the expression of lubricin, such as the expression of collagen type II, could be a possible biomarker for the detection of chondrocytes well-being and viability in the natural self-assembling constructs, called 'cell pellets'. Histology (hematoxylin and eosin) and histochemistry (alcian blue staining) methods were used to assess the chondrogenic differentiation of MSCs. The results showed that after 21 days the differentiated chondrocytes, when compared with MSCs cultured without chondrogenic medium (CD44, CD90 and CD105 positive; CD45, CD14 and CD34 negative), were able to produce significant quantities of collagen type I, collagen type II, and lubricin, suggesting hyaline cartilage formation. During the differentiation phase, the cells showed a reduced expression of RUNX2, a protein expressed by osteoblasts. Our studies demonstrated that 21 days is the optimum time for the implantation of chondrocytes differentiated from adipose tissue-derived MSCs. This information could be useful for the future development of cell-based repair therapies for degenerative diseases of articular cartilage. (C) 2014 Elsevier GmbH. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.