Skin acts as a protective barrier between the body and the external environment. Skin wounds are a common inflammatory disorder for the solution of which plants and essential oils have been applied as a medical option for centuries. Origanum vulgare essential oil (OEO) is largely used in folk medicine, but its molecular mechanisms of action are not fully known. In this study, we evaluated the anti-inflammatory/antioxidant activity as well as wound healing capacity of a well-characterized OEO on human keratinocytes NCTC 2544 treated with interferon-gamma (IFN-gamma) and histamine (H) or subjected to a scratch test. The expression of pro-inflammatory mediators such as reactive oxygen species (ROS), inter-cellular adhesion molecule (ICAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 were verified. The DNA damage was shown by the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) and activation of proliferating cell nuclear antigen (PCNA). Moreover, the abnormal modification of extracellular matrix components (ECM) was examined by determining matrix metal-loproteinase (MMP)-1, and -12. Compared to untreated control, OEO showed efficacy in supporting and enhancing the cell motility. In IFN-gamma and H treated cells, OEO displayed a significant reduction of ROS, ICAM-1, iNOS, COX-2, 8-OHdG, MMP-1, and MMP-12. OEO proved useful to treat inflammation and support cell motility during wound healing.

Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model

Avola R;Graziano ACE;
2020-01-01

Abstract

Skin acts as a protective barrier between the body and the external environment. Skin wounds are a common inflammatory disorder for the solution of which plants and essential oils have been applied as a medical option for centuries. Origanum vulgare essential oil (OEO) is largely used in folk medicine, but its molecular mechanisms of action are not fully known. In this study, we evaluated the anti-inflammatory/antioxidant activity as well as wound healing capacity of a well-characterized OEO on human keratinocytes NCTC 2544 treated with interferon-gamma (IFN-gamma) and histamine (H) or subjected to a scratch test. The expression of pro-inflammatory mediators such as reactive oxygen species (ROS), inter-cellular adhesion molecule (ICAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 were verified. The DNA damage was shown by the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) and activation of proliferating cell nuclear antigen (PCNA). Moreover, the abnormal modification of extracellular matrix components (ECM) was examined by determining matrix metal-loproteinase (MMP)-1, and -12. Compared to untreated control, OEO showed efficacy in supporting and enhancing the cell motility. In IFN-gamma and H treated cells, OEO displayed a significant reduction of ROS, ICAM-1, iNOS, COX-2, 8-OHdG, MMP-1, and MMP-12. OEO proved useful to treat inflammation and support cell motility during wound healing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/163550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 50
social impact