Several maximum power point (MPP) tracking algorithms for solar power or photovoltaic (PV) systems concerning partial-shading conditions have been studied and reviewed using conventional or advanced methods. The standard MPPT algorithms for partial-shading conditions are: (i) conventional; (ii) mathematics-based; (iii) artificial intelligence; (iv) metaheuristic. The main problems of the conventional methods are poor power harvesting and low efficiency due to many local maximum appearances and difficulty in determining the global maximum tracking. This paper presents MPPT algorithms for partial-shading conditions, mainly metaheuristics algorithms. Firstly, the four classification algorithms will be reviewed. Secondly, an in-depth review of the metaheuristic algorithms is presented. Remarkably, 40 metaheuristic algorithms are classified into four classes for a more detailed discussion; physics-based, biology-based, sociology-based, and human behavior-based are presented and evaluated comprehensively. Furthermore, the performance comparison of the 40 metaheuristic algorithms in terms of complexity level, converter type, sensor requirement, steady-state oscillation, tracking capability, cost, and grid connection are synthesized. Generally, readers can choose the most appropriate algorithms according to application necessities and system conditions. This study can be considered a valuable reference for in-depth works on current related issues.

A review of recent advances in metaheuristic maximum power point tracking algorithms for solar photovoltaic systems under the partial-shading conditions

Pau, G.;
2022-01-01

Abstract

Several maximum power point (MPP) tracking algorithms for solar power or photovoltaic (PV) systems concerning partial-shading conditions have been studied and reviewed using conventional or advanced methods. The standard MPPT algorithms for partial-shading conditions are: (i) conventional; (ii) mathematics-based; (iii) artificial intelligence; (iv) metaheuristic. The main problems of the conventional methods are poor power harvesting and low efficiency due to many local maximum appearances and difficulty in determining the global maximum tracking. This paper presents MPPT algorithms for partial-shading conditions, mainly metaheuristics algorithms. Firstly, the four classification algorithms will be reviewed. Secondly, an in-depth review of the metaheuristic algorithms is presented. Remarkably, 40 metaheuristic algorithms are classified into four classes for a more detailed discussion; physics-based, biology-based, sociology-based, and human behavior-based are presented and evaluated comprehensively. Furthermore, the performance comparison of the 40 metaheuristic algorithms in terms of complexity level, converter type, sensor requirement, steady-state oscillation, tracking capability, cost, and grid connection are synthesized. Generally, readers can choose the most appropriate algorithms according to application necessities and system conditions. This study can be considered a valuable reference for in-depth works on current related issues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/168205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact