Background/Aim: This study aimed to analyze the dosimetric gain of the deep-inspiration-breath-hold (DIBH) technique over the free-breathing (FB) one in left breast cancer (LBC) 3D-conformal-radiotherapy (3D-CRT), and simultaneously investigate the anatomical parameters related to heart RT-exposure. Patients and Methods: Treatment plans were generated in both DIBH and FB scenarios for 116 LBC patients monitored by the Varian RPM™ respiratory gating system for delivery of conventional or moderately hypofractionated schedules (±sequential boost). For comparison, we considered cardiac and ipsilateral lung doses and volumes. Results: A significant reduction of cardiac and pulmonary doses using DIBH technique was achieved compared to FB plans. Larger clinical target volumes generally need longer distance between medial and lateral entrances of tangent fields at body surface, thus conditioning a worse heart RT-exposure. Conclusion: The DIBH technique reduces cardiac and pulmonary doses for LBC patients. Through easily detectable anatomical parameters, it is possible to predict which patients benefit most from DIBH-RT.

Anatomical predictors of dosimetric advantages for deep-inspiration-breath-hold 3D-conformal radiotherapy among women with left breast cancer

Ferini G.;
2021-01-01

Abstract

Background/Aim: This study aimed to analyze the dosimetric gain of the deep-inspiration-breath-hold (DIBH) technique over the free-breathing (FB) one in left breast cancer (LBC) 3D-conformal-radiotherapy (3D-CRT), and simultaneously investigate the anatomical parameters related to heart RT-exposure. Patients and Methods: Treatment plans were generated in both DIBH and FB scenarios for 116 LBC patients monitored by the Varian RPM™ respiratory gating system for delivery of conventional or moderately hypofractionated schedules (±sequential boost). For comparison, we considered cardiac and ipsilateral lung doses and volumes. Results: A significant reduction of cardiac and pulmonary doses using DIBH technique was achieved compared to FB plans. Larger clinical target volumes generally need longer distance between medial and lateral entrances of tangent fields at body surface, thus conditioning a worse heart RT-exposure. Conclusion: The DIBH technique reduces cardiac and pulmonary doses for LBC patients. Through easily detectable anatomical parameters, it is possible to predict which patients benefit most from DIBH-RT.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/169125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact