Raver2 is a putative modulator of the activity of the polypyrimidine-tract binding protein (PTB), one of the most intensively studied splicing repressors. Little is known about Raver2 expression, and all current data is from mice where it shows tissue specificity. In the present study, by comparing Raver2 transcript expression in human and mouse tissues, we found that human Raver2 is ubiquitously expressed in adult tissues. In order to investigate human Raver2 transcription regulation, we identified and characterized a putative promoter region in a 1000 bp region upstream of the transcription starting site of the gene. Dual luciferase reporter assays demonstrated that this region had promoter activity conferred by the first 160 bp. By mutagenic analyses of putative cis-acting regulatory sequences, we identified an individual site that decreased the promoter activity by up to 40% when mutated. Together, our results suggest that regulation of human Raver2 expression involves TATA-less transcriptional activity. (C) 2011 Elsevier B.V. All rights reserved.

Transcriptional regulation of the human Raver2 ribonucleoprotein gene

Filippello, Agnese;
2012-01-01

Abstract

Raver2 is a putative modulator of the activity of the polypyrimidine-tract binding protein (PTB), one of the most intensively studied splicing repressors. Little is known about Raver2 expression, and all current data is from mice where it shows tissue specificity. In the present study, by comparing Raver2 transcript expression in human and mouse tissues, we found that human Raver2 is ubiquitously expressed in adult tissues. In order to investigate human Raver2 transcription regulation, we identified and characterized a putative promoter region in a 1000 bp region upstream of the transcription starting site of the gene. Dual luciferase reporter assays demonstrated that this region had promoter activity conferred by the first 160 bp. By mutagenic analyses of putative cis-acting regulatory sequences, we identified an individual site that decreased the promoter activity by up to 40% when mutated. Together, our results suggest that regulation of human Raver2 expression involves TATA-less transcriptional activity. (C) 2011 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/173275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact