Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = −0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = −0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.
Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Delays the Phenotypic Manifestation of Krabbe Disease and Partially Restores Lipid Mediator Production in the Brain—Study in a Mouse Model of the Disease
Graziano A. C. E.;
2024-01-01
Abstract
Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = −0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = −0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.