In recent years, a variety of new technologies have been proposed that allow rapid qualitative and quantitative microbiological analyses. In this paper we discuss the urgent needs for reliable and rapid microbiological analytical techniques in different applicative fields involving the research, production and medical application of implant materials, and the potential benefits derived from the use of new methods for rapid bacterial quantification. Current compendial methods are easy to perform and have gained confidence over their long period of use, but the supplemental use of new technologies could represent real breakthroughs whenever sensitive and rapid responses are urgently required and not met by the tests currently in use. Overall, the new microbiological methods require critical evaluation depending on their specific type of application and they may still not be thought of as totally substitutive, but they certainly exhibit considerable potential for different areas of biomaterials, as well as for advanced therapy medicinal and tissue engineering treatments.

Innovative methods of rapid bacterial quantification and applicability in diagnostics and in implant materials assessment

Pegreffi F;
2007-01-01

Abstract

In recent years, a variety of new technologies have been proposed that allow rapid qualitative and quantitative microbiological analyses. In this paper we discuss the urgent needs for reliable and rapid microbiological analytical techniques in different applicative fields involving the research, production and medical application of implant materials, and the potential benefits derived from the use of new methods for rapid bacterial quantification. Current compendial methods are easy to perform and have gained confidence over their long period of use, but the supplemental use of new technologies could represent real breakthroughs whenever sensitive and rapid responses are urgently required and not met by the tests currently in use. Overall, the new microbiological methods require critical evaluation depending on their specific type of application and they may still not be thought of as totally substitutive, but they certainly exhibit considerable potential for different areas of biomaterials, as well as for advanced therapy medicinal and tissue engineering treatments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/179986
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact