Alterations in DNA methylation and inflammation could represent valid biomarkers for the stratification of patients with major depressive disorder (MDD). This study explored the use of DNA-methylation based immunological cell-type profiles in the context of MDD and symptom severity over time. In 119 individuals with MDD, DNA-methylation was assessed on whole blood using the Illumina Infinium MethylationEPIC 850 k BeadChip. Quality control and data processing, as well as cell type estimation was conducted using the RnBeads package. The cell type composition was estimated using epigenome-wide DNA methylation signatures, applying the Houseman method, considering six cell types (neutrophils, natural killer cells (NK), B cells, CD4+ T cells, CD8+ T cells and monocytes). Two cytokines (IL-6 and IL-1β) and hsCRP were quantified in serum. We performed a hierarchical cluster analysis on the six estimated cell-types and tested the differences between these clusters in relation to the two cytokines and hsCRP, depression severity at baseline, and after 6 weeks of treatment (celecoxib/placebo + vortioxetine). We performed a second cluster analysis with cell-types and cytokines combined. ANCOVA was used to test for differences across clusters. We applied the Bonferroni correction. After quality control, we included 113 participants. Two clusters were identified, cluster 1 was high in CD4+ cells and NK, cluster 2 was high in CD8+ T-cells and B-cells, with similar fractions of neutrophils and monocytes. The clusters were not associated with either of the two cytokines and hsCRP, or depression severity at baseline, but cluster 1 showed higher depression severity after 6 weeks, corrected for baseline (p = 0.0060). The second cluster analysis found similar results: cluster 1 was low in CD8+ T-cells, B-cells, and IL-1β. Cluster 2 was low in CD4+ cells and natural killer cells. Neutrophils, monocytes, IL-6 and hsCRP were not different between the clusters. Participants in cluster 1 showed higher depression severity at baseline than cluster 2 (p = 0.034), but no difference in depression severity after 6 weeks. DNA-methylation based cell-type profiles may be valuable in the immunological characterization and stratification of patients with MDD. Future models should consider the inclusion of more cell-types and cytokines for better a prediction of treatment outcomes.
Exploring the use of immunomethylomics in the characterization of depressed patients: A proof-of-concept study
Serretti A.;
2025-01-01
Abstract
Alterations in DNA methylation and inflammation could represent valid biomarkers for the stratification of patients with major depressive disorder (MDD). This study explored the use of DNA-methylation based immunological cell-type profiles in the context of MDD and symptom severity over time. In 119 individuals with MDD, DNA-methylation was assessed on whole blood using the Illumina Infinium MethylationEPIC 850 k BeadChip. Quality control and data processing, as well as cell type estimation was conducted using the RnBeads package. The cell type composition was estimated using epigenome-wide DNA methylation signatures, applying the Houseman method, considering six cell types (neutrophils, natural killer cells (NK), B cells, CD4+ T cells, CD8+ T cells and monocytes). Two cytokines (IL-6 and IL-1β) and hsCRP were quantified in serum. We performed a hierarchical cluster analysis on the six estimated cell-types and tested the differences between these clusters in relation to the two cytokines and hsCRP, depression severity at baseline, and after 6 weeks of treatment (celecoxib/placebo + vortioxetine). We performed a second cluster analysis with cell-types and cytokines combined. ANCOVA was used to test for differences across clusters. We applied the Bonferroni correction. After quality control, we included 113 participants. Two clusters were identified, cluster 1 was high in CD4+ cells and NK, cluster 2 was high in CD8+ T-cells and B-cells, with similar fractions of neutrophils and monocytes. The clusters were not associated with either of the two cytokines and hsCRP, or depression severity at baseline, but cluster 1 showed higher depression severity after 6 weeks, corrected for baseline (p = 0.0060). The second cluster analysis found similar results: cluster 1 was low in CD8+ T-cells, B-cells, and IL-1β. Cluster 2 was low in CD4+ cells and natural killer cells. Neutrophils, monocytes, IL-6 and hsCRP were not different between the clusters. Participants in cluster 1 showed higher depression severity at baseline than cluster 2 (p = 0.034), but no difference in depression severity after 6 weeks. DNA-methylation based cell-type profiles may be valuable in the immunological characterization and stratification of patients with MDD. Future models should consider the inclusion of more cell-types and cytokines for better a prediction of treatment outcomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.