Segmented regression is widely used in many disciplines, especially when dealing with environmental data. This paper deals with the problem of selecting the correct number of changepoints in segmented regression models. A review of the usual selection criteria, namely information criteria and hypothesis testing, is provided. We enhance the latter method by proposing a novel sequential hypothesis testing procedure to address this problem. Our sequential procedure’s performance is compared to methods based on information-based criteria through simulation studies. The results show that our proposal performs similarly to its competitors for the Gaussian, Binomial, and Poisson cases. Finally, we present two applications to environmental datasets of crime data in Valencia and global temperature land data.

Sequential hypothesis testing for selecting the number of changepoints in segmented regression models

Priulla, Andrea
;
2024-01-01

Abstract

Segmented regression is widely used in many disciplines, especially when dealing with environmental data. This paper deals with the problem of selecting the correct number of changepoints in segmented regression models. A review of the usual selection criteria, namely information criteria and hypothesis testing, is provided. We enhance the latter method by proposing a novel sequential hypothesis testing procedure to address this problem. Our sequential procedure’s performance is compared to methods based on information-based criteria through simulation studies. The results show that our proposal performs similarly to its competitors for the Gaussian, Binomial, and Poisson cases. Finally, we present two applications to environmental datasets of crime data in Valencia and global temperature land data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/187133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact