Background/aims: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. Methods: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. Results: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20⁻100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). Conclusion: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.

Protective Actions of Anserine Under Diabetic Conditions

Scuto M;
2018-01-01

Abstract

Background/aims: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. Methods: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. Results: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20⁻100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). Conclusion: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/197709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact