This paper proposes an analysis procedure able to determine the flexural response of rectangular symmetrically reinforced concrete sections subjected to axial load and uniaxial bending. With respect to the usual numerical approaches, based on the fibre decomposition method, this procedure is based on the use of analytical expressions of the contributions to the equilibrium given by the longitudinal reinforcement and the concrete region in compression, which depend on the neutral axis depth and the curvature at each analysis step. The formulation is developed in dimensionless terms, after a preliminary definition of the geometrical and mechanical parameters involved, so that the results are valid for classes of RC sections. The constitutive laws of the materials include confinement effect on the concrete and post yielding behaviour of the steel reinforcement, which can be assumed to be softening behaviour for buckled reinforcing bars. The strength and curvature domains at the first yielding of the reinforcement in tension and at the ultimate state are derived in the form of analytical curves depending on the compression level; therefore, the role of a single parameter on the shape of these curves can easily be deduced. The procedure is validated by comparing some results with those numerically obtained by other authors.
An Analytical Step-by-Step Procedure to Derive the Flexural Response of RC Sections in Compression
FOSSETTI, MARINELLA;
2013-01-01
Abstract
This paper proposes an analysis procedure able to determine the flexural response of rectangular symmetrically reinforced concrete sections subjected to axial load and uniaxial bending. With respect to the usual numerical approaches, based on the fibre decomposition method, this procedure is based on the use of analytical expressions of the contributions to the equilibrium given by the longitudinal reinforcement and the concrete region in compression, which depend on the neutral axis depth and the curvature at each analysis step. The formulation is developed in dimensionless terms, after a preliminary definition of the geometrical and mechanical parameters involved, so that the results are valid for classes of RC sections. The constitutive laws of the materials include confinement effect on the concrete and post yielding behaviour of the steel reinforcement, which can be assumed to be softening behaviour for buckled reinforcing bars. The strength and curvature domains at the first yielding of the reinforcement in tension and at the ultimate state are derived in the form of analytical curves depending on the compression level; therefore, the role of a single parameter on the shape of these curves can easily be deduced. The procedure is validated by comparing some results with those numerically obtained by other authors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.