The purpose of this study is to examine the development of Italian tourist areas (circoscrizioni turistiche) through a cluster analysis of short time series. The technique is an adaptation of the functional data analysis approach developed by Abraham et al (2003), which combines spline interpolation with k-means clustering. The findings indicate the presence of two patterns (increasing and stable) averagely characterizinggroups of territories. Moreover, tests of spatial contiguity suggest the presence of ‘space–time clusters’; that is, areas in the same ‘time cluster’ are also spatially contiguous. These findings appear to be more robust in particular for those series characterized by an increasing trend.
An examination of tourist arrivals dynamics using short-term time series data: a space–time cluster approach
SCUDERI, RAFFAELE
2013-01-01
Abstract
The purpose of this study is to examine the development of Italian tourist areas (circoscrizioni turistiche) through a cluster analysis of short time series. The technique is an adaptation of the functional data analysis approach developed by Abraham et al (2003), which combines spline interpolation with k-means clustering. The findings indicate the presence of two patterns (increasing and stable) averagely characterizinggroups of territories. Moreover, tests of spatial contiguity suggest the presence of ‘space–time clusters’; that is, areas in the same ‘time cluster’ are also spatially contiguous. These findings appear to be more robust in particular for those series characterized by an increasing trend.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.