The time required to stabilise mature aerobic granules is rather variable. In addition, cultivation time and the structural characteristics of granules seem to be related to the nature of wastewater influent. Granular sludge has been used for the treatment of several industrial wastewaters, but nothing has been reported about wastewater characterized by the simultaneous presence of hydrocarbons and high chloride concentration. In this work, the authors analysed the granulation process and performance as well as the physical characteristics of aerobic granules in two Granular Sequencing Batch Airlift Reactors (GSBARs), fed with acetate-based synthetic wastewater in reactor 1 (R1) and with a mixture of real and simulated slop (R2). The results obtained in 100 days show that full granulation was achieved in both reactors. The granules in R2 developed more quickly, but they appeared slightly unstable and more susceptible to breaking. Despite high salt concentration, the efficiency of phosphorous and carbon removal was satisfactory. Low nitrification activity was observed in R1, confirming that a longer time is necessary to obtain the acclimation of autotrophic biomass in aerobic granules. In R2 the combined effect of salinity and hydrocarbons caused the inhibition of the autotrophic biomass, with the consequence that nitrification was absent. Hydrocarbons were initially removed by adsorption afterwards by biological degradation with a removal efficiency of over 90%.

Cultivation of granular sludge with hypersaline oily wastewater

CAMPO, RICCARDO;DI BELLA, GAETANO;
2015

Abstract

The time required to stabilise mature aerobic granules is rather variable. In addition, cultivation time and the structural characteristics of granules seem to be related to the nature of wastewater influent. Granular sludge has been used for the treatment of several industrial wastewaters, but nothing has been reported about wastewater characterized by the simultaneous presence of hydrocarbons and high chloride concentration. In this work, the authors analysed the granulation process and performance as well as the physical characteristics of aerobic granules in two Granular Sequencing Batch Airlift Reactors (GSBARs), fed with acetate-based synthetic wastewater in reactor 1 (R1) and with a mixture of real and simulated slop (R2). The results obtained in 100 days show that full granulation was achieved in both reactors. The granules in R2 developed more quickly, but they appeared slightly unstable and more susceptible to breaking. Despite high salt concentration, the efficiency of phosphorous and carbon removal was satisfactory. Low nitrification activity was observed in R1, confirming that a longer time is necessary to obtain the acclimation of autotrophic biomass in aerobic granules. In R2 the combined effect of salinity and hydrocarbons caused the inhibition of the autotrophic biomass, with the consequence that nitrification was absent. Hydrocarbons were initially removed by adsorption afterwards by biological degradation with a removal efficiency of over 90%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11387/112016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? ND
social impact