In this article, a new scheme for range-based localization is proposed. The main goal is to estimate the position of a mobile point based on distance measurements from fixed devices, called anchors, and on inertial measurements. Due to the nonlinear nature of the problem, an analytic relation to compute the position starting from these measurements does not exist, and often trilateration methods are used, generally based on least-square algorithms. The proposed scheme is based on the modeling of the localization process as a parallel robot, thereby methodologies and control algorithms used in the robotic area can be exploited. In particular, a closed-loop control system is designed for tracking the position of a mobile point based on range measurements from fixed anchors, and it is shown a peculiar structure of the tracking error dynamics, whose allows an intuitive gain tuning and ensures global exponential stability. Moreover, it is also shown a nice connection between tuning parameters and rate of convergence of the estimation error. Experimental results confirm the validity of the proposed localization method.

Localization Based on Parallel Robots Kinematics As an Alternative to Trilateration

Giovanni Garraffa;
2022-01-01

Abstract

In this article, a new scheme for range-based localization is proposed. The main goal is to estimate the position of a mobile point based on distance measurements from fixed devices, called anchors, and on inertial measurements. Due to the nonlinear nature of the problem, an analytic relation to compute the position starting from these measurements does not exist, and often trilateration methods are used, generally based on least-square algorithms. The proposed scheme is based on the modeling of the localization process as a parallel robot, thereby methodologies and control algorithms used in the robotic area can be exploited. In particular, a closed-loop control system is designed for tracking the position of a mobile point based on range measurements from fixed anchors, and it is shown a peculiar structure of the tracking error dynamics, whose allows an intuitive gain tuning and ensures global exponential stability. Moreover, it is also shown a nice connection between tuning parameters and rate of convergence of the estimation error. Experimental results confirm the validity of the proposed localization method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11387/154563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact