197Au+197Au collisions at 15 MeV/nucleon were studied using the multidetector array CHIMERA and heavy ion beams from the superconducting cyclotron of LNS Catania. The experiment was aimed at studying the mechanism of energy dissipation in collisions of very heavy systems. In the present contribution we report on a part of our study concentrated on a subject of basically binary damped collisions, in which only two main fragments are formed prior to secondary deexcitation processes. Such "binary" events were selected by using complete information from the exclusive-type data (including all Z ≥ 3 fragments) obtained with the CHIMERA multidetector. Results are compared with predictions of a classical dynamical model of Błocki et al., in which both scenarios of energy dissipation, one-body or two-body dissipation mechanisms, are assumed.
DYNAMICS OF “BINARY” 197Au+197Au COLLISIONS AS A TEST OF ENERGY DISSIPATION MECHANISM
LANZALONE, GAETANO
Membro del Collaboration Group
;
2007-01-01
Abstract
197Au+197Au collisions at 15 MeV/nucleon were studied using the multidetector array CHIMERA and heavy ion beams from the superconducting cyclotron of LNS Catania. The experiment was aimed at studying the mechanism of energy dissipation in collisions of very heavy systems. In the present contribution we report on a part of our study concentrated on a subject of basically binary damped collisions, in which only two main fragments are formed prior to secondary deexcitation processes. Such "binary" events were selected by using complete information from the exclusive-type data (including all Z ≥ 3 fragments) obtained with the CHIMERA multidetector. Results are compared with predictions of a classical dynamical model of Błocki et al., in which both scenarios of energy dissipation, one-body or two-body dissipation mechanisms, are assumed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.