Multi-breakup processes for the Sn-124+Ni-64 system at 35 MeV/nucleon have been studied with the forward part of the CHIMERA detector. An extensive comparison between experimental data corresponding to almost complete ternary events and constrained molecular dynamics (CoMD-II) calculations suggests different characteristic times in the selected processes. This is in agreement with previous studies of the same reaction already published concerning the prompt intermediate-mass-fragment emission. Stimulated by CoMD-II calculations, we investigate the existence of more complex dynamical multi-breakup processes occurring on the same time scale. A detailed study of the rotational dynamics leading to slower dynamical fission processes is also presented.

Dynamical multi-breakup processes in the Sn124+Ni64 system at 35 MeV/nucleon

LANZALONE, GAETANO
Formal Analysis
;
2007

Abstract

Multi-breakup processes for the Sn-124+Ni-64 system at 35 MeV/nucleon have been studied with the forward part of the CHIMERA detector. An extensive comparison between experimental data corresponding to almost complete ternary events and constrained molecular dynamics (CoMD-II) calculations suggests different characteristic times in the selected processes. This is in agreement with previous studies of the same reaction already published concerning the prompt intermediate-mass-fragment emission. Stimulated by CoMD-II calculations, we investigate the existence of more complex dynamical multi-breakup processes occurring on the same time scale. A detailed study of the rotational dynamics leading to slower dynamical fission processes is also presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11387/8394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
social impact